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Preface

The purpose of this research was to investigate and compare the performance

of C- and O-grid generation methods as applied to predicting the flow about a NACA

0012 airfoil. The Beam and Warming algorithm was employed to solve the Navier-

Stokes equations as applied to a two-dimensional, viscous, compressible flow. Similar

flow conditions were establshed utilizing both grid generation methodologies and the

results compared to experimental data. The NACA 0012 airfoil was chosen because

it has been extensively studied and experimental results were readily available.

Numerical grid generation has become an important tool used in the numerical

solution of partial differential equations. The general method involves a discretiza-

tion of the physical domain into a collection of grid points. The differential equations

are then approximated as a set of algebraic equations applied in this domain. In sim-

plest terms, the grid is orthogonal and rectilinear. In the case of a curved boundary,

such as an airfoil, it is advantageous to consider a conformal grid which greatly

simplifies the application of the boundary conditions. The mapping between the

physical and computational domains is accomplished by means of the transforma-

tion metrics, which must also be applied to the field equations one is attempting to

solve. The accuracy of the numerical solution is therefore influenced by the type of

grid chosen and the associated metrics. Differing methods of handling the boundary

conditions may also have an influence on the numerical solution. For this reason,

the differences in the metrics and the application of boundary conditions are also

compared.

I would like to thank my thesis advisor, Capt Philip Beran for his continuing

support and encouragment during this research. I would also like to thank Dr Joseph

Shang, the sponsor of this research, for his strong support, for providing computer

resources, and most especially for allowing me access to the outstanding group of

people he supervises. Without the help of those mentioned this thesis could not

ii



0have been accomplished. Finally, a special thanks to my wife and children for their

patience and moral support over the past six months.
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Abstract

The purpose of this study was to investigate and compare the performance

of C- and O-grid topologies as applied to numerically predicting the flow about

a NACA 0012 airfoil. Both types of grid were generated using a hyperbolic grid

generation code. The solution of the flow field was numerically calculated using the

Beam and Warming approximate factorization method to solve the two-dimensional

Navier-Stokes equations for viscous, compressible flow.

This study examined the performance of each grid for a range of Mach number

(0.3 to 1.1) and angle of attack (2 to 12 degrees). The Reynolds number was approx-

imately 2,000,000, with variations to exactly match experimental flow conditions.

The numerical inquiry consisted of two parts. The first part was a grid sensitivity

study using the C-grid. Progressively finer grids were employed until the respective

numerical solutions converged. The second part was a parametric study using the

O-grid. The trailing edge curvature was reduced from 0.005c to 0.0015c and the

numerical results compared with those of the C-grid.

The numerical solutions obtained with both the C- and O-grid configurations

compare favorably to both experiment and previous numerical results. The numerical

results produced indicate that both grids are satisfactory in a general application.

However, specific weaknesses arise for each type of grid in certain situations. In these

instances, there may be an advantage in selecting a particular type of grid.

In the subsonic range, the O-grid is superior to the C-grid in determining

the pressure coefficient in the vicinity of the leading edge. The O-grid displays an

advantage when large flow gradients appear in the vicinity of the trailing edge, such

as the formation of a lambda shock. The O-grid also attains convergence for certain

critical cases (high Mach number, Reynolds number, or angle of attack) for which

the C-grid solution diverges.

x i



The C-grid displayed several advantages over the O-grid. One advantage is

ease of application. It is generally easier to construct a C- grid to a given set of

specifications than an O-grid. The C-grid handles the flow resolution better in the

wake, especially when the flow gradients are concentrated directly behind the airfoil.

In this region the C-grid displays a considerably higher concentration of grid points.

The C-grid also predicts the pressure distribution at transonic speeds and the mid-

chord shock location more accurately the O-grid.

xii



COMPARISON OF C- AND O-GRID GENERATION MIETHODS

USING A NACA 0012 AIRFOIL

I. Introduction

The purpose of this study is to investigate and compare the performance of

two differing grid generation methods with varying topologies as applied to the flow

about a NACA 0012 airfoil. The numerical method of solution is based on the Beam

and Warming approximate-factorization algorithm applied to the two-dimensional,

mass-averaged, Navier-Stokes equations for compressible, viscous flows. While this

algorithm is applicable to both steady and unsteady flows, the solutions considered

in this study are all steady state.

Numerical grid generation has become an important tool used in the numeri-

cal solution of partial differential equations (PDEs). The general method involves a

discretization of the physical domain into a collection of grid points. The differential

equations are then approximated as a set of non-linear algebraic equations applied to

this domain. In simplest form, the grid is orthogonal and rectilinear. In the case of

a curved boundary, the difficulty of extrapolating data at gridpoints adjacent to the

boundaries is introduced. Not only is this extrapolation cumbersome and difficult,

it also imposes a reduction in the order of accuracy for the boundary conditions,

thus degrading the fidelity of the solution throughout the field. To overcome these

difficulties for the case of a curved or irregular boundary, such as an airfoil, it is

advantageous to consider a conformal grid that simultaneously eases the implemen-

tation of the boundary conditions and avoids the loss of accuracy associated with

the aforementioned method.

1



Grid generation methods can be classified into three major catagories (6:521):

complex variable methods, algebraic methods, and differential equation methods.

The differential equation method is the most common and powerful, especially for

complex geometries. These methods generally employ solutions of Laplace's or Pois-

son's equations to specify the coordinate transformation between the physical and

computational domains. The PDEs chosen are generally elliptic or hyperbolic, al-

though some recent investigations have explored parabolic grid generators. The

elliptical methods have a strong applicability to internal flows and also to external

flows where multiple bodies are present. Hyperbolic methods are generally easier to

apply and are applicable for external flows where there is no constraint of the outer

computational domain. The grid generation code employed in this study was written

by Barth and Kinsey (9) and is a modification of the hyperbolic method described

by Steger and Chaussee (15).

Two different types of grid are considered in this work: a C-grid and an O-grid.

The C-grid envelopes the airfoil in C-shaped loops beginning and terminating in the

far wake. The branch cut, or the line along which the numbering of the grid lines

begins and ends, therefore exists in the wake and extends from the trailing edge to

the far field boundary. The O-grid has oval-like loops which completely encircle the

airfoil. The cut line for the O-grid is arbitrary, and for this study extends from the

far-field boundary in front of the airfoil to the leading edge.

Of particular interest when comparing two different grids for a given applica-

tion, aside from rectifiable differences such as grid spacing and resolution, are the

transformation metrics, which provide the mathematical map from the physical to

the computational domains. Since the metrics appear in the differencing equations

to be solved, they have an impact on the local truncation error. Also of interest are

any differences due to the varying means of applying the boundary conditions.

This study consists of two basic parts. The first consists of a grid refinement

study using the C-grid. Progressively finer C-grids were employed for selected con-

2



ditions (Mach number ranging from 0.3 to 0.78; angle of attack between 2 and 4

degrees) until the solutions became invariant. To incorporate the O-grid generator

for the NACA 0012 airfoil, it is necessary to truncate the trailing edge and fit it

with a circular arc. As the truncation point is moved aft, the resulting trailing-edge

radius of curvature (TEC) becomes smaller. The second part of the study involved a

parametric study based on the TEC. Values of TEC ranging from 0.005c to 0.0015c

were considered. The results are compared with those obtained using the C-grid.

Data analyzed for comparative purposes included the lift coefficient, C1, drag

coefficient, Cd, and pressure coefficient, '. To examine convergence rate differences,

C, and Cd are plotted versus iteration number. Contours of Mach number, pressure

coefficient, and vorticity are presented. Contours of the Jacobian, aspect ratio,

and orthogonality are presented and examined to determine structural differences

between the two grid types.

Both versions of the Navier-Stokes code (for C- and O-grids) were authored by

Dr Miguel Visbal of the Wright Research and Development Center (WRDC) Flight

Dynamics Lab (FDL) (16) (17). The code is an implementation of the implicit,

approximate-factorization algorithm developed by Beam and Warming (4). The

turbulence model is a modification of the algebraic eddy viscosity model developed

by Baldwin and Lomax (3) (See Appendix-D).

Computer resources required were provided by FDL and included accounts on

the Cray-Vax and the Cray XMP. Data plots were performed on the FDL Prime

computer. Selected data runs were performed on the AFIT Stellar computer for the

dual purpose of comparison and code checkout.

3



IL Analysis

2.1 Governgs Equatsons

The fundamental equations of fluid dynamics are based on the principles of

classical mechanics and thermodynamics: the conservation of mass, momentum, and

energy. These equations are often grouped together and referred to as the Navier-

Stokes equations. The equations are presented in an Eulerian formulation using

vector notation, and are valid for unsteady, compressible, and viscous flows (13::11):

Conservation of Mass (Continuity)

5 + V . (PV) = 0, (1)

Conservation of Momentum (Newton's Second Law)

& + * . (PVV) = P[+ V . 7 (2)

Conservation of Energy (First Law of Thermodynamics)

-+ .V , -- +Pf. V + . ( ) (3)

The stress tensor a is expressed in terms of the fluid pressure and the viscous stress

tensor, L

_ =-pI + 1. (4)

Other variables are defined in the list of symbols at the beginning of this

report.Two additional relations are required to close the equations. These are the

0



* equation of state for a perfect fluid

p = pRT = pe(-y- 1), (5)

and Fourier's law of heat conduction that relates the heat flux vector to the

temperature gradient

i= -kVT, (6)

where the thermal conductivity, k, is a function of the temperature.

If a Newtonian fluid is assumed, then Stokes' law relates the viscous stresses to

the rate of strain

_ = A('. IV)I + .V + (097)), (7)

where Stokes' hypothesis 3A + 2p = 0 essentially equates the mean pressure in a

deforming viscous fluid and the thermodynamic pressure (20:70). The total internal

energy, E, can be related to the specific internal energy, e, and the velocity (in two

dimensions):

Elp(e + 2 . (8)

To facilitate the solution of the NS equations, they are nondimensionalized (see

Appendix A) and are given below in conservation-law form for a two-dimensional,

rectilinear coordinate system. The internal heat generation, Q, is assumed constant

in time.
Ip+ iO(PU) + O(pv)=0(9

+- =-0 (9)

8(_t) + a(pP5+ p--) 8 (p,,- -) = p (10)
- + + (10

@5



aC(PV) + O ,PV + p - r,,) + Cput - r,.) = Pj (11)8T o + 8:

8 E, -P( £ , + ) + 8( E, , + p,, - ,, .. - v ,,. + q. )
Cit f , fy8

+ (EiJ + pv- uTr vy - v + ) - o. (12)

The components of the non-dimensional stress tensor are given by

+ IL au + + + 6,A . (13)

These equations are applicable to an orthogonal, rectilinear coordinate system. To

transform the equations so that they apply to a general curvilinear coordinate system,

0 the chain rule is employed. The transformation is from the physical domain (x,y)

to the computational domain (fr), where the partial derivatives take the following

form (13:252)

(14)

Yx, y). (15)

The direct application of the chain rule then produces the derivative operators

a L8 a ona

= ax (16)

a af a o a

= , .(17)

(18)

0
6



0
The metrics are determined in the following manner

d =Cd + ,dy (19)

dil= ,dnsd + ,dy. (20)

In matrix form

Therefore, by solving the transformation identity (19:141)

/ s s, z d' (24 )

and defining the Jacobian of the transformation

J= c. =I,&,- = ,,% - C,^ (25)
49(X) (25)t f

7



S 1 126)

the following relationship between the metrics can be established:

f" = Y, J (V -z xJ(27)

= -Y j %,= -Xfj. (28)

The NS equations may then be written in terms of the general curvilinear coordinates

OlU <9F aG aF 49G
5* + S1f+ §-+%-jj+0 (29)

where body forces are omitted and

U= (p, ,pV, p) T  (30)

Pu
pI5 - r,5

F = 2(31)
PUV - rYv

(pe + p)u- F

G = V - r'Sy (32)PV 2 _ rYY

(pe + p)v - G4

8



0To incorporate turbulence, the viscosity is separated into the molecular viscos-

ity, p, and the turbulent eddy viscosity, e. Then Stokes' hypothesis is extended to

include the turbulent eddy viscosity as

, = (A + C). (33)

The molecular viscosity is calculated from Sutherland's formula. The turbulent eddy

viscosity is obtained via the eddy viscosity model of Baldwin and Lomax (3) (See

Appendix D). In a similar fashion, the thermal conductivity is separated into a nom-

inal component, k, and a turbulent component, ki, by defining the nominal and

turbulent Prandtl numbers respectively

=1,P k = ,- (34)

The viscous stress and heat conduction terms can then be written in the following

form (18:6)

, = -3A , + A,(, + ,,) (35)
TX, = -U(S + V,) (36)

r = -3 Av + A,(u, + v,,) (37)

F4  - ur. + vTr - q (38)

G4 = r,, + vryy - qy (39)

P = p(r - 1X - I(U 2 +V2 )) (40)
2

8T (41)
qz = -(k + k 1 ) j-(

q,= -(k + kj).T (42)

0The molecular Prandtl number, Pr, the turbulent Prandtl number, Pr, and the

9



0specific heat at constant pressure, c , are taken as constants:

Pr = Z %_ .72 (43)
k

PrI=e' L-.9 (44)
k
-fR 1,000 Joules/Kg-K. (45)Y -I

The NS equations can be cast in strong conservative form as follows (18:7)

aC p ada + a + Bin(46)

where

- U (4T)
J

_ ( '+CG) (48)
J

= (7 3F+ iO) (4)
J

To facilitate the numerical implementation, the strong-conservation form of the equa-

tions is rewritten as (18.8)

10



0~ aO 8El (9E2 _

OgVi(Ur,U6) aV2(U, U,) WWU (9W2(U, U,) (50)

cc + + ai + ln

where 
P

El=1 pU + tp (51)
j pvU + cp

(p +pe-l

pV

E2=i puV+ flip (52)

0

V,= biuc +b2vc (53)
b~uf +b3 vf

bluut + b2(vu( + uvk) + b~.vvt + b4Tf

0

V2 clv,, + C21irl (5)

CIUU,, + C2tLV, + C3VU,7 + C4VV,7 + C5T,,

0

= 1 ClUC + C3V( (5)
C2t + COtk

CIUU,( + C2VU( + COuv4 + C4VV( + CGT(

11



0
1o

W2 du + (56)w2 = 7 d~u, + d3V 56

djuu, + d2(tu, + uv,,) + d3vt, + d4T,.

U and V denote the contravariant velocities:

U = Gu + ft, (57)

V = lt, + ,hv. (58)

The viscous coefficients are:

b, = -A, (' 2+2 (59
3 /4b 1 =-~ 1  ~ +(59)

b2 = -1 I A (60)
2

43 -" -3 ,, t 2(1

2i C '
b4 = - A + C (, + ,) (62)

3 4
C1 = 2 () (63)

C2 = 1 (64)
2 (36

C3 =- 3 t (65)

3

CS= -C p() Gq+fy) (68)

d,= 2 x 4, (69)

d3 -3,\14+
2 lI3J+U) (70)

d4= Cp IL+ - (" (71)

12



The NS equations written in the above form are valid for unsteady, viscous

flows. The governing equations form a hybrid hyperbolic-parabolic system. Their

parabolic nature arises from the second-order derivatives in the momentum and

energy equations. The continuity equation contains only first-order terms and is

hyperbolic (5:27).These characteristics of the system of partial differential equations

dictate the manner in which the boundary conditions may be applied (13:312). See

Appendix C for an explanation of the boundary conditions.

2.2 Grid Analysis

As previously mentioned, the grids used for this study were of two types: C-grid

and O-grid. Both were numerically generated using the hyperbolic grid generation

method of Steger and Chaussee (15) as incorporated in the code written by Barth

and Kinsey (9). An advantage of emplo'ing a hyperbolic grid generator is that only

the inner boundary need be specified (6:530), i.e., a point distribution is specified

on the airfoil surface only. The solution then proceeds outward from the surface in

a time-like manner.

The algorithm developed by Steger and Chaussee utilizes the definitions of the

transformation Jacobian and cell orthogonality to devise a mapping scheme from the

physical to the computational domain (9:3):

Z(Zi + yf/, = 0 Orthogonality (72)

J = 21a flyA - %yJacobian (73)

J-= = s - zyc Inverse Jacobian. (74)

Here the Jacobian represents the cell area ratio between the computational and

13



physical domains, and is variable throughout the mesh. A typical transformation is

illustrated in Figure 1. The area integrands in the the physical and computational

domains can be written as follows (9:3):

dA = dzdy = J-tdqd (75)

Jdxdy = dqd,. (76)

Numerically, Af and Aq are arbitrary and are most conveniently chosen to

equal one. In this case, the inverse Jacobian approximates the physical cell area.

The orthogonality constraint and inverse Jacobian are locally linearized using

X = O +A&X (77)

Y =Y f+ A, (78)

where x" and y' denote a known, near-solution state. The linearization then proceeds

as follows (15:433):

X(X9= (Xo + AX)(z ° + AX)

= XC.O + XAX,, + XAX + O(A2 )

= ,0Z' + X(x - o),, + ,(Z - 0 o)f

= X + XXC - X(79)
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(b) Transformed Plane

Figure 1. Transformation from Physical to Computational Plane (Re f: IS)
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The resulting locally linearized system is then (9:4)

so = (80)

or alternately

A& + B& = F. (81)

The finite-difference scheme is central differenced in and forward differenced

in il. Typically, xf and & are approximated as follows (9:6)

o = Z,+lj - sitj (82)
2A4

while so and e, are extracted from the orthogonality constraint and the Jacobian.

- +x (84)

S -o - (.()2 + (sfO)2 85

There are certain geometric conditions for which the hyperbolic algorithm as

described has difficulties. These are pronounced slope discontinuities and regions of

reverse or concave curvature. These problems may produce unwanted grid charac-

teristics if the discontinuities or regions of reverse curvature propogate into the grid

interior. By adding explicit and implicit dissipation these difficulties can be partially

circumvented. The resulting hyperbolic equations are utilized in the numerical code

of Barth and Kinsey. The reader is referred to (9) for a development of the delta

formulation of the algorithm employed.
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Since the local truncation error will in part depend upon the discretization of

the coordinate system (i.e., the transformation metrics), it is useful to have an alter-

nate means to examine a grid in terms of these parameters. A physically meaningful

reparameterization of the Jacobian matrix is presented by Kerlick and Klopfer (8).

The metric tensor is introduced as an intrinsic property of the transformed geometry.

The metric tensor is defined as (8:788)

=6k &k d' (86)

where 6kj represents the Kronecker delta function

0 ifk ( L

(1 ifk = 1.

In general, this approach is valid for three dimensions. However, in the current

context, the following is presented for the two-dimensional case where { = { and

f 2 = qj. The components of the metric tensor may then be written as

91,. = + (87)

g1 = izx, + 'Yfsb (88)

2 (89)

The metric tensor can be decomposed into its determinant and into terms

which quantify the aspect ratio and orthogonality of the grid cells. The skewness,

or the angular deviation between the physical and computational coordinate lines,

is also defined via components of the metric tensor. In terms of the metric tensor,

the inverse Jacobian is defined by
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det (sty" - xY)2

The orthogonality of the grid is characterized by the angle 0, between the tangent

lines to the f and t7 coordinate lines at the points of intersection, where

cos(,j) = 9 (1# j; no sum on ij) (90)

-CZY, + Yf (91)

The aspect ratio is defined by

A& r/k (k=2,n; no sum on k) (92)

@ = s-+. 7 (93)y l

while the cosine of the skewness angle, a, is determined by

cos(a,) - (94)

(95)

A complete error analysis of the Beam and Warming algorithm incorporating

the effects of the metrics is beyond the scope of this report (see McRae and Klopfer

(12)). However, an examination of the metric parameters listed above can provide

some insight into the degree of truncation error induced by the grid. In particular,

one should suspect increased truncation error when the gradient of the metrics and

the associated metric parameters becomes large. This is particularly true if large

flow gradients develop at the same location.

0
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III. Numerical Solution of the NS Equations

The numerical procedure for the solution of the Navier-Stokes equations is out-

lined in this chapter. The finite-difference scheme employed is based on the work by

R. M. Beam and R. F.Warming and is known as the Beam and Warming approx-

imate factorization algorithm (5). The algorithm has four pertinent characteristics

(19:139):

1. unconditional stability,

2. spatial factorisation,

3. delta formulation, and

4. three-level implicit structure.

8.1 Implicit NS Code

The implicit implementation solves the strong conservation form of the Navier-

Stokes equations. In delta formulation, with first-order Euler time differencing, the

scheme may be written as follows (18):

I I+At(~ Of2Mf) 1J+At( - _)AI

-At (E- - V2)n + _(E2 - W, _ w,)n .(96)

The overall scheme progresses in time as

n+, = (Yn + A, (97)

where n represents the temporal index and A, B, M, and N represent the Jacobian
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matrices (see Appendix B)

A - B- (98)

BE1  B-.
M = X N (99)

Application of second-order central differencing for the spatial derivatives yields as

a function of nodal position (18:19)

{I +At (jAt. - 62M,,) } AUj = (100)

-At {Jp(Ej - V2), + p,1(E2 - w),}

(I + At (IB,, - 6, N.) } AC., = ArY;' (101)

&i = (i- 1)A 1 < i < IL (102)

= (j - 1)AV 1 <j : JL (103)

with the finite-difference operators defined as (18:20)

- (i+1/2j- A-1/2j) (104)

6 =, j = (ij+1/2 -IJ1/2) (105)Afj

' sa =  (f.+lj - fA-lj) (106)2A

= (tj+I - AJ-1) (107)2Atj

The transformation derivatives (metrics) are computed directly from the grid.

Second-order, central differencing is employed for interior points, while second-order,

one-sided differences are employed on the boundaries. The scheme is implemented in

an alternating-direction fashion by first solving equation (100) along lines of constant
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f for 2 <j J.11 followed by the solution of eqn (101) along lines of constant v for

2 < i < IL-I. This results in a block tridiagonal system along each coordinate line

due to the computational stencil brought about by the approximate factorization.

The boundary equations are then solved explicitly.

Compressible flow computations are suceptible to numerical instabilities in-

duced by nonlinear effects due to large flow gradients (e.g. shock waves and flow

separation). These nonlinearities are especially prone to producing numerical in-

stabilities at high Reynolds numbers, which in turn can slow down convergence

considerably (13:322).

The oscillations induced by numerical instabilities can be damped by the in-

clusion of second- and fourth-order artificial viscosity in the algorithm. An explicit

fourth-order damping term, D,, is included in the right- hand side of equation (100).

Two second order damping terms, Df and D, are included within the respective

* implicit operators in equation (101).

The equations for these added terms are (18:20)

De = + i f nU (108)

= -wAtJ-'62J. J (109)
D, = -'WAtj,6J, 1, (110)

where w, - 1 and w, 2_ 2w,.

In order to accelerate convergence for a steady flow computation, a local time

step, Atij, is introduced. The local time step is a function of the local flow con-

dition and the transformation metrics. The time step is controlled by the user via

specifation of the Courant number, C, which is utilized in the following fashion

At = CAtm,,. (111)
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The maximum local timestep, at,,.,, as mentioned, is then a function of the local

transformation metrics and flow conditions

At. V1 + aV ,2 + (A-W+ +-)] (112)

Ast =A (113)

AS7 = + aq. (114)

Generally, for an explicit algorithm, the Courant number must be less than

one for stability. However, for the Beam and Warming implicit algorithm it can be

much higher and is typically set to twenty (5:20).

3.2 Convergence Criteria

By considering caly steady-state solutions, the specification of convergence

criteria is simpif 1 d. In general, some small oscillation in flow variables will persist

indefinitely. These oscillations may be too small to appreciably affect the solution.

A suitable convergence criteria must be established to ascertain when the oscillations

aie satisfactorily small.

The convergence criteria used in this study follows the example of Visbal (18)

and Boyles (5). Convergence was assesed by monitoring the airfoil lift and drag coef-

ficients. The solution was assumed converged when the amplitude of the oscillations

for C was less than 0.1 percent and the variation in Cd was less than one drag count,

where one drag count equals 0.0001.
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IV. Results and Discussion

This chapter presents the results obtained from the numerical study of the two

differing grid topologies. The study is divided into two basic parts. The first consists

of a grid refinement study using the C-grid. Progressively finer grids are employed

for subsonic and transonic cases. The second part is the comparative study between

the C- and O-grid topologies. An overview of the various grids employed and their

construction is presented first. This is followed by the results of the C- grid refinement

study and a comparative analysis between the C- and O-grid.

4.1 Grids Employed

There are procedural differences in the construction of the two grid types. The

construction of C-grids is based on a straightforward application of the Barth and

SKinsey code (9). The construction of O-grids is complicated by the need to enforce a

finite curvature at the trailing edge, allowing the O-grid generator to function. The

first step is the construction of the airfoil shape. The airfoil is then truncated at

a specified point and a circular arc is affixed to form the trailing edge. The point

distribution around the airfoil is then specified and the actual generation of the grid

can then proceed. This procedure represents an added degree of difficulty which

should be considered when comparing the two types of grid.

The grids employed in this study are listed in Tables 1 and 2. Figures 2

through 5 display the progressively finer C-grids employed. C-Grids 5 through 8,

shown in Figures 6 through 9 were constructed for specialized purposes. C-grid

5 is an asymmetric grid, constructed with more points and finer spacing on the

upper surface to test for better shock capturing in the transonic case. C-grid 6 was

constructed with a finer leading edge spacing in an attempt to better match the

experimental pressure coefficient data at that location. C-grid 7 was constructed in

an attempt to smooth the gradient in the transformation metrics, especially at the
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trailing edge/wake junction. C-Grid 8 represents a further attempt to smooth the

metrics without sacrificing fine tangential spacing at the trailing edge. The three

basic O-grids shown in Figures 10 through 12 vary at the point in which the nominal

airfoil was truncated, thus they vary in the radius of curvature at the respective

trailing edges. O-grid 4, shown in Figure 13, was constructed with a finer grid

spacing on the upper surface to test for better shock resolution. Figure 14 shows an

example of the trailing-edge geometry for the O-grids, while Figures 15 and 16 offer

a comparison of leading-edge geometries for the C- and O-grids.

4.2 C-Grid Refinement Study

Two specific flow regimes were considered for the C-grid refinement study; a

subsonic and transonic case. The subsonic case chosen was at M = 0.3, a = 4.04

degrees, and Re = 1,860,000. The transonic case chosen was at M = 0.775, a = 2.03

*degrees, and Re = 1,900,000. These cases were chosen because of the availability of

comparative experimental data (2) (11).

Figures 17 and 18 display the variation of pressure coefficient on the surface

for the subsonic case. The differences in the plots appear most readily at the leading

edge. C-grids 1 and 4 display almost identical results, each displaying a spike in Cp on

the upper surface near the leading edge and generally overestimating the magnitude

of C, along the upper surface to the midchord point. A close examination reveals that

C-grid 1 matches the experimental data slightly better than C-grid 4 in that range.

However, an examination of similar experimental data reveals the sensitivity of the

pressure distribution to angle of attack (7:58). The corrected, experimental angle

of attack (as opposed to the geometric angle) is a difficult parameter to determine

precisely, and is a likely cause of this discrepancy. The results using a finer leading-

edge spacing (C-grid 6) are shown in Figure 19. The spike in pressure at the leading

edge is slightly reduced, but the trend remains the same. The numerical results

obtained are duplicated using a finer grid (299x100) by Boyles (5:43).
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C-Grid I IL x JL j Pt,. Ptsi0 ) Pt.. I Aft, .AftI A% KDIST])

1 119x40 35 35 25 .0125 .0250 .0020 5
2 149x60 40 40 35 .0100 .0250 .0020 10
3 179x80 50 50 40 .0075 .0200 .0004 10
4 219X100 60 60 50 .0050 .0150 .0004 15
5 229x100 70 60 50 .0050 .0150 .0004 15
6 219xi00 60 60 50 .0030 .0100 .0002 15
7 219x100 50 50 60 .0030 .0400 .0004 15
8 299x60 60 40 100 .0050 .0100 .0004 5

Table 1. C-Grid Specifications

j O-Grid IL x JL Pts, Pt, i TEC ) A6, ] A&,, ]A J KDIST
1 204x108 102 102 .0051c .0050 .000150 .0004 15
2 204x108 102 102 .0025c .0050 .000100 .0004 15
3 204 108 102 102 .0014c .0050 .000075 .0004 15

4 204x108 102" 102 .0014c .0050 .000075 .0004 15
* Grid spacing refined along forward surface

Table 2. O-Grid Specifications
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The results for the transonic case show a greater variation with grid spacing.

Figures 20 and 21 display a convergence toward the experimental data with grid

refinement. As the grid becomes finer and the chordwise distribution of points in-

creases, the numerical solution approaches the experimental data. C-Grid 5 was

constructed in an attempt to fit the grid to the expected solution. The number of

points on the upper surface was increased and the chordwise spacing decreased at

the expected location of the shock. A slight variation of the pressure distribution is

evident in Figure 22, with the shock definition slightly enhanced.

In general, there will be some variation from experimental data due to a com-

bination of experimental error, numerical truncation error, and the need to apply

artificial viscosity to achieve solution convergence. To determine the effect of the

second-order artificial viscosity, the value utilized in the previous case was reduced

by fifty percent. Figure 23 displays the result using C-grid 4; the reduction in

artificial viscosity produced an even closer agreement with the experimental data.

Comparing Figures 22 and 23 indicates that minimizing the artificial viscosity may

be as or even more important in obtaining an accurate solution than an overreliance

on reducing grid spacing. The importance of minimizing artificial viscosity is further

demonstrated by Figure 24, in which the effect of artificial viscosity on C1 and Cd is

shown. In particular, the value of Cd varies by nearly 10 percent, while C, varies by

nearly 4 percent over the range of artifical viscosities considered.

The contour plots display the same trends as the plots of Cp on the surface.

Comparison of the Mach contours in Figures 25 and 26 reveals that the solution ob-

tained with C-grid 1 exhibits a misplaced sonic line, moves the shock too far forward,

and has a poor resolution of the shock wave. Figure 27 displays the experimental

location of the shock at the midchord point (11:69). The solution obtained using

C-grid 4 places the shock at the correct location and displays better shock resolution.

Figures 28 and 29 exhibit the dependency of convergence rate on flow conditions

and grid characteristics. The plots display the oscillation of lift coefficient with
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iteration number, N. Convergence is obtained for the subsonic case (M = 0.3) in less

than 600 iterations using C-grid 2. However, increasing the Mach number to 0.775

produces a marked oscillation in C which persists beyond 5000 iterations. This is

attributed at least in part to the point distribution in the normal direction. Referring

to Table 1, C-grid 2 uses only 50 percent more points in the normal direction to cover

twice the distance (i.e., ten chord lengths instead of five). The poor point distribution

can contribute to numerical error, which is then further exacerbated by large flow

gradients. When additional points are added in the normal direction, the problem

ceases, as revealed by Figure 30.

4.3 Comparison of C-grid and 0-Grid Results

Three regimes are chosen for comparative purposes: subsonic, transonic, and

supersonic. Experimental data is used as the yardstick of measure in the subsonic and

transonic cases, while the differences in flow structure is considered in the supersonic

case. In general, the higher the Mach number, the more differences appear in the

solutions between the two grid types. Only small differences are noticed in the

subsonic regime, while more significant differences are noted for the other cases.

4.3.1 Subsonic Case Of the first three O-grids employed, (see Table 2) the

only difference is the point at which the trailing edge is truncated and the circular

arc affixed. Of course, the further aft this truncation occurs, the smaller the radius

of curvature of the arc. In general there was little difference in the solutions obtained

using these three grids. Comparing Figures 31 and 32 reveals no discernable differ-

ence in the plots. Figure 31 reveals the effect of the truncation at approximately

x = .97, where the data is similarly truncated. However, the pressure distribution

over the remainder of the surface is largely unaffected. The integrated variables,

ClandCd, are also comparable. The variation of C and Cd is less than 2 percent

when comparing O-grids 1 and 3, and less than 0.5 percent when comparing O-grids

2and 3.
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Comparing these results with those of C-grids 4 and 6 for the subsonic case

(Figures 18 and 19) shows a similar agreement with two exceptions: the leading

and trailing edges show slight differences. At the leading edge, C-grid 4 displays a

greater pressure spike on the upper surface. Only when the leading-edge spacing is

reduced to .003 (C-grid 5) do the pressure values agree very closely at that location.

When equal spacing is specified at the leading edge, the O-grid performs slightly

better. Note that the specification of equal spacing does not enforce an equal point

distribution in the region near the leading edge for the C- and O-grids. This can be

seen in Figures 5 and 12; the point distributions are similar but not exact. There

is also some variation in C. at the trailing edge. The averaging procedure applied

to the boundary conditions in the wake for the case of the C-Grid may induce

some oscillatory behavior there. The O-grid has no branch cut in the wake and so

this difficulty does not arise. See Appendix C for a discussion of these boundary

conditions.

The comparison of lift coefficient versus angle of attack is presented in Fig-

ure 33. Results are presented for Reynolds number 6,000,000. The experimental

data (1:462) represents an average of the results presented for this value of Reynolds

number. The agreement with this data indicates that the turbulence level for the

experiment could not be precisely matched, since the only differences in the experi-

mental data was the transition point and turbulence level. Transition was specified

at the leading edge for both C- and O-grids in the numerical code, attempting to

match the experimental case where .011 inch grain was applied at the leading edge.

The numerical results show excellent agreement up to 10 degrees angle of attack.

Past this point there is some variation, with the O-grid correctly predicting a,j at

approximately 12 degrees. The data curve truncates at the twelve degree point for

the C-grid because the solution diverged at higher values.

4.3.2 Transonic Case In the transonic case, there again is no discernable

difference in the pressure distribution on the surface between O-grids 1, 2, and 3,
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as shown by Figures 34 and 35. The data is truncated near the trailing edge for 0-

grid 3, as noted in the subsonic case, but the overall distribution remains unaffected.

However, a comparison with the result of C-grid 4, also shown Figure 34, indicates

that the C-grid, with equal values set for second- and fourth-order artificial viscosity,

performed slightly better in predicting Cp in the vicinity of the shock wave. In an

attempt to match this result, the chordwise grid spacing was reduced forward of

the shock wave for O-grid 5. However, the C-grid still outperformed the O-grid

in matching the experimental data, as the results of Figure 36 fail to show any

improvement.

A comparison of Mach contours shows two deficiencies of O-grid 3 vis-1-vis

C-grid 4. See Figures 25 and 37. Firstly, the O-grid displays a poorer resolution

of the shock wave, with the shock wave positioned too far forward. Secondly, the

O-grid displays large errors in the wake region. The O-grid has a large concentration

of grid points directly aft of the trailing edge. However, beyond s w 1.3 the grid

spacing becomes larger. This inadequate resolution produces the choppy, stairstep

type of contour seen in the wake of Figure 37. O-grid 5 was constructed specifically to

address the first problem. The result is seen in Figure 38. The resolution of the shock

wave for this case equals that produced by the C-grid. In addition the small contour

directly aft of the shock wave is nearly identical to that of the C-grid, in contrast to

the previous case. The O-grid solution still places the shock wave slightly forward

of the C-grid shock wave, but the overall definition is much improved. However, the

shifting of points to the surface has the result of reducing still further the number

of points in the wake. The deficiency noted in the wake for O-grid 3 thus becomes

even more severe for O-grid 4.

Interestingly, contours of C. indicate a deficiency of the C-grid. Upon exam-

intion of Figure 39, the contour in the wake reveals a small oscillation that occurs

directly along the branch cut. This oscillation is most likely due to the handling of

the boundary conditions along the cut. The corresponding O-grid plot, Figure 40,
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has a similar contour in the wake, but lacks the oscillation apparent in the C-grid

case. In general, the same comments apply to the pressure contours in terms of shock

location and resolution as for the Mach contours, i.e., the O-grid solutions display

comparable shock resolution only if a particular effort is made to concentrate points

in the vicinity of the shock.

The comparison of vorticity between the two grids, shown in Figures 42 and

43, display similar profiles. However, the inadequate resolution of the O-grid wake

is again apparent in the step-like curves occuring there.

4.3.3 Supersonic Case The supersonic case considered is not compared with

experimental data as in the previous two cases. The conditions, M = 1.1, a = 60,

exceed the design specifications of the airfoil and experimental data in this regime is

very limited and somewhat suspect (10:3). However, a comparison can still be made

based on global flow characteristics.

Contour plots of Mach contours, C., and vorticity are presented in Figures 44

through 51. All of the O-grid plots display the weakness noted earlier of inadequate

resolution in the wake. The contours there are generally choppy and ill-formed, just

as in the previous cases. The resolution of the lambda shock forming at the trailing

edge is generally quite good for the O-grid, superior to that of the C-grid. This is

apparent for both the Mach and Cp contours. An examination of O-grid 3 (Figure

12) reveals why this is the case; the O-grid typically has a pronounced clustering

of points near the trailing edge, nearly coincident with the formation of the shock

wave. This aids the resolution of the shock wave, at least near the body.

The corresponding C-grid plots (Figures 45, 47, and 49) display an obvious

shortcoming in the large amounts of numerical noise in the region around the shock

wave. These disturbances are certainly nonphysical and appear most strongly just

prior to the shock wave. They appear to dampen as they propogate through the

shock and further downstream. The plot of vorticity is most interesting, as the
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disturbances appear to outline the grid elements themselves. It can be concluded

that these disturbances do not arise from the handling of the branch cut in the

wake, previously implicated in other cases for two reasons. Firstly, the flow remains

supersonic after the oblique shock and so downstream errors should not propogate

upstream, and secondly, the disturbances appear to dampen out, not magnifying, as

they approach the wake. For these reasons, the most likely source of this error is

the transformation metrics themselves. This hypothesis was tested by construcing

C-grid 8 in an attempt to smooth the metrics in the region where the numerical

noise was generated. The results obtained utilizing C-grid 8 are shown in Figures 50

and 51. The Mach contours display very little numerical noise in the region forward

of the shock, however, numerical noise persists aft of the shock wave. The vorticity

contours display the same trend. The large amounts of numerical noise forward of

the shock wave evident in Figure 49 are completely absent in Figure 51. However,

the numerical noise persists aft of the shock wave. See the section on the comparison

of the transformation metrics for a further discussion of this point.

4.3.4 Convergence Rate Comparrison There are minor differences in the con-

vergence properties for the C- and O-grids. Plots of C, and Cd are presented in Fig-

ures 52 through 55 for the subsonic and transonic cases. In general, the oscillations

in Ct and Cd are more pronounced for the O-grid than the C-Grid for the subsonic

case. Convergence is attained for the O-Grid solution in about 1400 iterations, while

the oscillations occuring in the case of the C-grid exhibit less amplitude, with conver-

gence attained in about 1100 iterations. For the transonic case, the C-grid solution

converges in 1700 iterations while the O-grid solution converges in 2000 iterations.

This difference in convergence rate is due in part to the smaller minimum time

step which must be specified to avoid divergence in the case of the O-grid. The local

time step, being a function of grid spacing, essentially becomes too large around

the trailing edge of the O-grid, where the tangential spacing is extremely small.

*Decreasing the user specified time step with respect to the C-grid value allows the
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O-grid solution to converge. It is significant that there are particular cases for which

the O-grid solution converges while the C-grid solution diverges. For example at

M = 0.3, a = 130, and Re = 6,000,000 the O-grid solution converges while the

C-grid solution diverges. This occurs despite lowering the minimum timestep for

the C-grid (as well as the CFL input). The typical mechanism for divergence is the

appearance of a negative value of temperature in the field. In terms of convergence

criterea, the C-grid solution exhibits less oscillation in the integrated variables and

tends to converge somewhat sooner, while the O-grid solution converges for more

critical flow conditions when the C-Grid solution diverges. This suggests that a

different source of numerical error is occuring to produce the difficulties mentioned.

4.4 Comparison of Transformation Metrics

There is a significant difference in the appearance of the transformation metrics

between the C-grid and O-grid topologies. It is most intuitive to display the metrics

in terms of geometric parameters such as the Jacobian, orthogonality, and aspect

ratio (8). Figures 56 and 57 display aspect ratio contours for C-grid 4 and O-grid 3

respectively. The basic structure of the contours is similar, there are some differences

"in the leading-edge area, while both display a steeper gradient in the area above and

below the trailing edge. The contours for the O-grid are generally more rounded,

while the C-grid displays a cusp in the transition to the wake region.

The departure from orthogonality is displayed in Figures 58 and 59. Both

grids are nearly orthogonal in the wake, i.e., cos(O) P 0. The largest differences here

are at the leading edge. Surprisingly, the C-grid exhibits a larger departure from

orthogonality in the region around the leading edge and above and below the leading

edge. This may partially explain why the C-grid requires a finer grid spacing at the

leading edge to match the more accurate O-grid performance there, as discussed

earlier.

Contour plots of the Jacobian, or the area ratio between the physical and
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computational domains, are presented in Figures 60 through 63. Some significant

differences are evident between the C- and O-grid cases. The C-grid displays a

distinct cusp above and below the trailing edge of the airfoil. The O-grid has a much

smoother transition in this area and the contours display such cusp. The numerical

error will be a function, in part, of the gradient in the transformation metrics.

Therefore, at the cusp point, the C-grid will generate metric-induced errors that are

larger than those of the O-grid. This offers a possible explanation for the numerical

oscillations occuring in the supersonic case. The oscillations occur in precisely the

region where the gradient of the Jacobian displays a discontinuity, corresponding to

a cusp in the Jacobian contours. The O-grid displays a well behaved gradient there,

and no such oscillations occur.

In an attempt to rectify this situation, C-grid 7 was generated with the intent

of smoothing the metric gradients (see Figure 8). It was hoped that this would al-

low a better solution and perhaps allow convergence for several C-grid cases which

diverged. However, this attempt was a failure because the means chosen to accom-

plish the smoothing was inadequate. Smoothing was accomplished by transfering

points from the airfoil surface to the wake and increasing the specified spacing at

the trailing edge. Figure 62 reveals that significant smoothing of the Jacobian con-

tours was achieved. However, this apparently increased the total truncation error

due to increased grid spacing to the extent that any improvement due to smoothing

the metrics was not discernable. A difficult trade-off occurs within the constraint

of a fixed number of grid points. This involves allowing sufficient grid resolution in

critical flow areas while dispermiting any abrupt changes in the metrics. Optimizing

this trade off may reduce the total truncation error.

C-grid 8 (see Figure 9) was also generated with the intent of smoothing the

metric gradients. The goal was to reduce the large amounts of numerical noise

evident in the C-grid solution for the supersonic case (see Figures 45 and 49). The

method employed to achieve smoothing was to enforce uniform tangential spacing
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from x = 0.8 to x = 1.0 (the trailing edge). The result on the Jacobian contours is

evident in Figure 63. The smoothing is effective forward of the trailing edge, but the

cusp still remains at z = 1.0, since the uniform spacing was not maintained beyond

this point. There is a strong correlation between the Jacobian contours and the

vorticity contours seen in Figure 51. The large amounts of numerical noise evident

in Figure 49 is completely gone in the region forward of the shock wave in Figure

51. This corresponds to the region in Figure 63 where the metric smoothing occurs.

However, the numerical noise persists aft of the shock wave, since the magnitude

of the metric gradients are unaltered beyond x = 1.0. The overall reduction in the

level of numerical noise could also be attributed to finer grid spacing (irregardless

of the metrics). However, a comparison with the midchord shock wave occuring

in the transonic case (see Figure 26), shows no numerical noise evident, despite a

relatively course tangential spacing. It is pertinent that the Jacobian contours are

well behaved in the midchord region. Therefore, it is inferred that the coincidence of

large flow gradients and large metric gradients contribute to the type of numerical

noise seen in Figure 49.
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Figure 21. C-grid 4: Transonic Pressure Coefficient Profile
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Figure 25. C-grid 1: Mach Contours M = 0.775, a = 2.03
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Figure 29. C-grid 2: Lift Coefficient vs Iterations, M = 0.775, a = 2.03
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Figure 31. O-grid 1: Subsonic Pressure Coefficient Profile
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Figure 37. 0-grid 3: Mach Contours, M =0. 775, a = 2.03
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Figure 46. 0-grid 3: Pressure Coefficient Contours, M =1.1, a = 6.00
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Figure 47. C-grid 4: Pressure Coefficient Contours, M = 1.1, a = 6.00
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Figure 49. C-grid 4: Vorticity Contours M =1.1, a = 6.00
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Figure 51. C-grid 8: Vorticity Contours, M =1.1, a =6.00
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Figure 53. C-grid 4: Force Coefficients vs Iterations, M =0.3, a =4.04
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Figure 55. C-grid 4: Force Coefficients vs Iterations, M = 0.775, a = 2.03
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V. Conclusions and Recommendations

The numerical solutions obtained with both the C- and O-grid configurations

using the Beam and Warming approximate factorization algorithm compare favor-

ably to both experiment and previous numerical results. The numerical results pro-

duced indicate that both grids are satisfactory in a general application. However,

specific weaknesses arise for each type of grid in certain situations. In these instances

there may be an advantage in selecting a particular type of grid.

Studies in the subsonic range indicate that when equal spacing of grid points

is specified at the leading edge, the O-grid is superior to the C-grid in determining

the pressure coefficient in the vicinity of the leading edge. The O-grid also displays a

pronounced advantage when large flow gradients appear in the vicinity of the trailing

edge, such as the formation of a lambda shock. The O-grid typically exhibits a clue-

tering of grid points around the trailing edge, and the gradient of the transformation

metrics is considerably smoother. For certain critical flow conditions, e.g., a combi-

nation of high Reynolds number, high Mach number or angle of attack, the O-grid

displays superior numerical stability when compared with the C-grid. This result is

a likely result of two effects: the global smoothness of the transformation metrics

compared to those of the C-grid, and the errors induced by the boundary conditions

across the C-grid branch cut. The increased numerical stability, demonstrated by

the O-grid, allows a better estimation of a at C..

The C-grid displayed several advantages over the O-grid as well. One advantage

is ease of application. It is generally easier to construct a C-grid to a given set

of specifications than an O-grid. The C-grid can be constructed in a single step

with minimal effort, while the O-grid requires multiple steps. It is also difficult in

the case of the O-grid to concentrate grid points in the wake while maintaining a

reasonable spacing at the trailing edge. The O-grid generator tends to coalesce points

in a fan-like shape directly above and below the trailing edge. Too fine a spacing
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at the trailing edge can produce numerical instabilities when using a hyperbolic

grid generator. Therefore, it becomes difficult to maintain adequate grid spacing

in the wake. In the wake region, both grids display problems. The O-grid has

difficulty resolving flow structures because of the large grid spacing there. The C-

grid develops small oscillations along the branch cut where the boundary conditions

are applied. However, the C-grid handles the flow resolution better in the wake when

the flow gradients are concentrated directly behind the airfoil. In this region the C-

grid displays a considerably higher concentration of grid points. The C-grid also

predicts the pressure distribution and shock location more accurately the O-grid in

the transonic case. The O-grid can approach the C-grid performance in this regard

only if a deliberate attempt is made to match the point distribution occuring in the

C-grid case, at the cost of a further deterioration of the solution in the wake.

The selection of a specific grid type should be geared to the application consid-

ered, as indicated by the conclusions enumerated above. However, there are several

recommendations that could increase the utility of both types of grids. In the case

of the C-grid, central differencing across the branch cut could reduce or eliminate

some of the spurious results demonstrated in the wake. However, this would create

additional computational and memory requirements. In the case of the O-grid, the

lack of an ability to control grid spacing in the wake, when applying a hyperbolic

grid generator, presents a significant problem. Therefore, an elliptic grid generation

scheme should be considered. This represents an added degree of difficulty due to the

iterative numerical process required and the constraint of the outer computational

domain. However, the constraint of the outer domain offers a means to control the

grid spacing in the wake.

An important consideration, which applies to both C- and O-grids, is the

minimization of artificial viscosity. In particular, second-order artificial viscosity has

a considerable effect upon the pressure distribution on the surface and the integrated

variables Ct and Cd. The minimization of artificial viscosity should be considered a
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prerequisite to obtaining an accurate solution.

Another approach worth consideration is an attempt to reduce the overall

truncation error by smoothing the transformation metrics. This involves a trade off

between the need to concentrate grid points in an area of interest and not allowing

a steep gradient in the transformation metrics to result. The most likely area of

application would be in the region above and below the trailing edge in the case of

the C-grid. A method of smoothing the metrics in this region, without unduly com-

promising the grid spacing, may provide a means of reducing the overall truncation

error.
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Appendix A. Non-dimensional Variables

The Navier-Stokes equations are generally nondimensionalized to allow for ease

of application. This is accomplished by selecting reference length, velocity, and

mass scales, L*, U;,, and p:. respectively. The advantage of this approach is the

appearance of non-dimensional parameters such as Mach number, Reynolds number,

and Prandtl number, which can then be varied independently. Denoting dimensional

variables with a *, the nondimensionalization appears as follows (6:191) (5:16)

LL U. Vi-

ML CL A; -Y.P:

P = - . q = - I=7
-2P. C="

M t= L=c
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Appendix B. Jacobian Matrices

The Jacobian matrices employed in equations (98-99) are presented below.

They are obtained by rewriting the vectors El, E2, V, and W2 appearing in equa-

tions (51-56) in terms of the conserved variables (p/J, Pu/J, pt/J, pe/J) and dif-

ferentiating with respect to C, (i, or , as indicated in equations (98-99). The

resulting matrices are then (18:45)

o G 0 0

A= -UU U-(y-2)Cu 4S-(-1)4v
40,# - VU U - (-f - i X,,U U - (-, - 2X,,, (,Y - I X,

(20 -- ye)u (7e-,)G-( (-1)uU (-ye-#X),-(-y- 1)vU -,U
* (115)

0 n 17V 0

B q,-,, U,, - (y - 2),, "vU- (-Y - ,, (-Y- 1),%%0 -UV nU -(-Y 1)VU V- (y - )%v (7- y

k(20,--ye)V (-ye-.,)qx-(-y-l),,V (-fe-,O,%-(-y- 1),v yV
(116)

where = 1/2(-y - 1)(u2 + V 2).
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The Jacobian matrices M and N are defined by

0 00 0

1 -(u + b2 V) b, 0 (117)

P -(b2u+ bv) b2 63 0

NL b42 b 3 b4

where

b4.L = -(q + 26 u,, + b, + b4.y(, - 1)(U 2 +,,2 e)

N2 = bi - b47(Y - 1)u + 2 u

N43 = bU+N-b-(

b. = by(- 1),

and
0 0 o 0

N 1 -(dju + d2 ) d, d2  0 (118)

P -(d 2U + dv) d2  d3  0

d~l d4 d43 d44

where

d4 = -(tg + 2quu+do,2 +4,y(y- 1XU2 +, - e)

d42 = d, - d,-y(y - 1)u + d2,

43 = d2 i+ d3 4Y(Y- 1)

d44 = d4 (Y-1).
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The coefficients bi and d appearing in M and N respectively are defined in equations

(59) through (71).
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Appendix C. Boundary and Initial Conditions

The particular solution of all differential equations requires the specification of

boundary and/or initial conditions. In this case, the boundary conditions take the

form of specifying flow variables on the airfoil surface and along the grid boundaries.

Initial conditions are specified by assigning flow variables throughout the field upon

code initiation.

Refering to Figure 1, freestream values in non-dimensional form are assigned

throughout the flow field and along the boundary ABC.

P=Pco = 1 ffO

P-Poo= U00 =1 (119)

u = U. cos(a) v = U. sin(a).

The initial eddy viscosity is generally set equal to a constant in the boundary along

the airfoil. Since the initial conditions are a function of Mach number and angle

of attack, it is required that restart solutions maintain the same Mach number and

angle of attack.

At the airfoil surface, EFG, an adiabatic condition is imposed. The velocities

are determined there by no-slip condition.

fs= --. =0 . (120)

The bondary-layer assumption is employed, as the gradient of pressure normal to

the surface is assumed zero. The adiabatic assumption implies that the temperature

gradient normal to the surface is zero. The surface density is permitted to vary as a

function of surface pressure and temperature via the perfect gas law.
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a P 0(121)

PW = pW(p,T). (122)

The downstream outflow conditions along boundaries AD and HC are com-

puted by the following means

PPO (123)

P

0. (124)

In general, the derivative conditions here allow for large scale flow fluctuations due

to the forces applied on the body.

In the case of the C-grid, the boundary conditions along the branch cut must be

specified to assure continuity is satisfied. Thus along cut ED and EH, the following

is applied
P 

P

a P P
(125)
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0
which reduces to averaging across the wake

P |P P
p P p

-1 1
e + 2 (126)

is # i sn-la

Iwoe 1oWer lower

In the case of the O-grid, the placement of the wake cut is arbitrary and in this

case is chosen to extend from the leading edge to the forward boundary. Coincident

grid lines are superimposed over those lines bordering the O-grid wake cut to allow for

central differencing to be applied across the wake rather than the somewhat artificial

boundary condition imposed in the C-grid wake. This represents a difference in the

manner in which the boundary conditions are applied in the two cases.

1
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Appendix D. Turbulence Model

One of the most difficult problems in modern computational fluid dynamics is

the correct modeling of the turbulence. The turbulence model employed here is a

modified version of the algebraic eddy-viscosity model of Baldwin and Lomax (3).

The application of the turbulence model is applied in three seperate regions: the

boundary layer on the airfoil, the wake proximal to the airfoil trailing edge, and the

far-field wake (see Figure 59).

The boundary layer of the airfoil is divided into an inner and outer region. In

the inner region, the eddy viscosity, c,, is given by the Prandtl-Van Driest formula

(18:12)

e = p( .D) jwj (127)

* with
D =1- exp [-.K (P ) 

(128)

and

ffian a (129)

where w is the vorticity, Y represents the normal distance to the airfoil surface,

K = 0.40 is the von Karman constant, and the subscript w denotes conditions

located at the surface (wall).

In the outer region of the boundary layer, the eddy viscosity is defined by

(18:12)

C" = pKCY,,F,,Fk (130)

F, = 1+5.5(ChYIYm4)]-t  (131)
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where F., = max(YIwID), Y,.. is the value of Y corresponding to F.,. and k f

o.o168,C = 1.6, Ck = 0.3.

The turbulence model switches from the inner to outer formulation at the first

value of Y for which ei >_ e.. Transition from laminar to turbulent flow is specified

by user input and is chosen to match boundary-layer trip locations when comparing

to experimental data.

The turbulence model in the far-wake is modeled by defining the turbulent

eddy viscosity there as (18:13)

YmAU 2

, = P wk (132)

where

Cwt = 0.058

FMW = M4:m(Yl1W)
,?z 2 2)/ U2+ zN/?

AU = (V + V ,,) -(2+ )/,M

In the wake,Ymos is measured from the wake centerl .e as determined by the

location of minimum velocity. The intermitancy factor Fk is obtained from equation

(131). The constants C., and Ck are chosen to match theoretical values for an

incompressible turbulent wake (14).

In the near-wake the turbulent eddy viscosity is determined by exponentially

smoothing the eddy viscosity profile at the trailing edge to the far-wake profile. The

following functional form is employed (18:14):

1
Cn. = {[C(So Y) + e .k(o, Y)]

0 +A [e(xo, Y) - c(s,., Y)J} (133)

105



A = tanh [8? e 4]

The distance xo - xj, is chosen to be of order 106, where 6 is the average boundary

layer thickness at the trailing edge. It should be noted that Visbal considers the

near-wake formulation a preliminary approach within the context of the algebraic

eddy viscosity modeL

i I
I

BOUN4DARY LAYERS I NEAR-UACE FAR-UAKE
YII 0I I

0

V

II.

Figure 64. Regions of Application for Turbulence Model

(Ref: 18)
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Appendix E. Computer Resources and Codes

The Navier-Stokes code was executed on two computer systems. The primary

computer utilized was the Aeronautical Systems Division Cray XMP, located at

Wright-Patterson Air Force Base, Ohio. Selected data runs were accomplished on the

Air Force Institute of Technology Stellar computer, also located at Wright-Patterson

Air Force Base. Table 3 compares execution times of the two computers (CPU time).

The times quoted are for 500 iterations using a 119x40 C-Grid. The computations

on the Stellar were performed using single- precision (32 bit) accuracy, while the

runs performed on the Cray XMP were performed using double-precision (64 bit)

accuracy. The front-end machine used to interface with the Cray XMP was the

Aeronautical Systems Division Cray-Vax.

Additional computer resources employed included the FDL Iris and Prime

computers. The Iris workstation was utilized for grid generation and data reduction.

Data plotting was accomplished using the Prime computer, in conjunction with the

Talaris laser printer.

A computer listing is provided for the metric analysis program used to calculate

the Jacobian, aspect ratio, orthogonality, and skewness parameters for a given grid.

The transformation metrics are extracted directly from the Navier-Stokes code, the

above parameters are then calculated from the metrics. Listings of the Navier-Stokes

I computer CPU time (sec ) C-Grid Iterations CI
Stellar 1 60.1 J 119x40 1 500 0.35398 10.029575

Cray XMP 64.4 119x40 500 0.35416 0.029480

Table 3. Comparison of CPU times: Cray vs Stellar
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code for the C-grid and the associated data reduction codes may be found by refering

to Boyles (5). Both the C- and O-grid Navier-Stokes codes, and the grid generation

codes, are archived on the Stellar computer.
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